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TECHNICAL NOTE D-1534

A NUMERICAL SCLUTION OF THE PROBLEM OF MIXING OF
LAMINAR COAXTAL STREAMS OF GREATLY DIFFERENT
DENSITIES - ISOTHERMAL CASE

By Herbert Weinstein and Carroll A. Todd

SUMMARY KR

The system under consideration is a slow-moving, heavy inner stream sur-
rounded by a fast-moving, light outer stream infinite in extent. The flow region
of interest lies between the inner jet entrance and the end of the potential
core. The density ratio of the two streams may vary through several orders of
magnitude, and no restrictions are placed on the velocities of the two compo-
nents. The only information required is the initial velocity and concentration
profiles and the physical properties of the fluids.

An equation set is derived and solved numerically for several sets of input
parameters. A system of equations that is not extremely sensitive to physical
property variations results from the manner in which the variables are made di-
mensionless. A diffusion equation valld for high values of the density ratio is
employed. No consideration is given to the hydrcdynamic stability of the system.

Results are calculated for a glven set of physical properties and a range of
values of density and velocity ratio. These results include:

1. The potential core length is approximately 6 radii for fluids of the same
density and a velocity ratio of 100.

2. For values of density ratio above 20, the effect of varying density ratio
is small.

3. For Froude numbers of 104 or less, the mass and momentum transfer become
second~order effects compared to the acceleration due to the force field.

4. Large changes in the values of physical properties of the two fluids
cause relatively small changes in potential core length.



INTRODUCTION

There has been considerable discussion in recent years on the mixing of
laminar coaxial streams of different densities (refs. 1 and 2). However, the
density ratios of the two streams considered have almost always been approxi-
mately 2 or less. The coaxlal-flow, gaseous-reactor concept developed in the
recent past (ref. 3) and the work on coaxial streams of plasma and coolant
(ref. 4) have spurred interest in the coaxial flow of gases with density ratios
of 5 to 100.
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Figure 1. - Flow system.

The system considered here and shown in figure 1 1s that of a slow-moving,
heavy inner stream surrounded by a fast-moving light outer stream infinite in ex-
tent. The flow reglon of 1nterest is that between the inner jet entrance and the
end of the potential core. This potential core is defined as the relatively un-
disturbed inner stream fluid. The ratlo of the densities of the two streams may
vary through several orders of magnitude; as long as the flow is laminar, there
are no limits on the velocities of the two components. The initial velocity and
concentration profiles and the physical properties of the fluids are the only in-
formation that is required. Any initial veloclty profile may be specified.

The hydrodynamic equations are transformed to a stream-function coordinste
set and then integrated numerically from the 1lnitial conditions. No attempt was
made to uncouple the simultaneous differential equations as this has always
forced restrictions on the density variation. It was felt that, in order to
maintain a reasonable degree of accuracy 1n the solution, it would be best to



the burden of the computations on the digital computer. The method of attack
used here i1s similar to that of Pai (ref. 1), but i1t is concerned with a cylin-
drical geometry whereas Pail’s work is for a Cartesian system. The diffusion
equation used by Pai limits his work to density ratios of about 1 or 2, while
this work employs a diffusion equation that is also correct for much higher
values of density ratio. The manner in which the variasbles are made dimension-
less 1s different from that of Pal and results in a system of equations that are
not very sensitive to physical property variations. Velocity ratios lnstead of
velocity differences are considered when the system 1s being defined.

The quantities of major interest calculated and presented here are the
length of potential core, the average axlal velocity of the inner fluild, and the
inner-fluid average density for various values of initial density ratic and ini-
tial velocity ratio of the two streams. Sample velocity and concentration pro-
files are also shown to illustrate the changes in the profiles with increasing
axial distance downstream. Cases with both flat and parabolic initial velocity
profiles are presented to indicate the effect the shape of the initial velocity
profile has on potential core length. The effect of a body force directed along
the axis of the flow system is shown because this effect would be present in a
coaxlal~flow, gaseous-reactor concept. Finally, the values of the parameters
(i.e., Schmidt number, Reynolds number, viscosity ratio, and diffusion coeffi-
clent) are varied to demonstrate their effect on the aforementioned values.

Presented here, then, are the results of an accurate numerical solution of a
laminar, isothermal coaxial-flow system in which the two fluids have greatly dif-
ferent densities. The method is similar to that of Pai but differs on several
important points. No consideration has been given to the hydrodynamic stability
of the system.

SYMBOLS
a acceleration due to body force

C concentration (mole fraction) of inner-stream component

D diffusivity

F Froude number

K Boltzmann constant
L length

m molecular welght

N molar dengity of fluid

P pressure



Re Reynolds number
r radlial length varisble

Sc Schmidt number

T temperature

u axial velocity component

\% molecular volume

v radial velocity component

Z “axial length variable

B (my/mp) - 1

€ maximum energy of attraction for Lennard-Jones potential
K vigecosity

o) mass dengity

g moleculer dismeter

s stream function

Q arithmetic mean molecular speed

Subscripts:

av average value for 8l1l r ©positions at a glven =z
L length

max maximum

0] initial conditions
1 inner stream
2 outer stream

11 self diffusion

12 binary diffusion



Superscript:

(7) dimensionless varilable

ANAL,YSIS

The derivation of the equation set that describes the coaxial-flow system is
presented here. The numerical methods employed in the solution of these equa-
tions are described in appendix A.

Assumptions and Restrictions

The assumptions and restrictions made in deriving the equation set are
listed here, not necessarily in order of importance:

(1) The entire flow field is at a constant temperature.
(2) The entire flow field is at a constant pressure.
(3) There is axial symmetry in the flow system.

(4) The fluids mix ideally; there is no pressure, temperature, or volume
change on mixing.

(5) There is steady state in the system.
(6) The normal boundary-layer assumptions are used; that is,

du du oc oC
§>>gi, u >> v, EI_'>>E’

(7) The assumption O¥/dr >> Oy/dz, which follows from u >> v, is stated
separately because it 1s used again in a transformation of coordinates.

Derivation of Equation Set

The continuity, momentum, and diffusion equations are given for the system
shown in figure 1 (egs. (1), (2), and (3)). The continuity equation already con-
tains the steady-state and axisymmetric assumptions. The momentum equation is
the result of simplifying the Navier-Stokes equation with the steady-state,
constant-pressure, axisymmetric, and boundary-layer assumptions. The last term
of this equation, which includes the effect of the buoyancy of the outer stream,
describes the effect of a body force directed along the axis and away from the
entrance. The diffusion equation (ref. 5), which contains the steady-state and
axisymmetric assumptions but no assumptions as to the variation in density, is
correct for large density variations. No pressure or thermal diffusion is con-
sidered here as noted by assumptions (1) and (2) of the aforementioned list.



Each equation is written for variable density and applies over the whole flow
field because the gases form a continuum. Only density changes that are caused

by mixing are considered.

Continuity:

2 (o) + 2 (pur) = 0 (1)
Momentum:
du du 1 93 ou alp - 02)
VE"'U_SE:E;&'(I’H&—)‘F_—'—B—— (2)
Diffusion:
3¢ 3 o d [Pz a¢
Va?”gz-zy(p > (3)

Since the fluids mix ideally, the density at a point is equal to the sum of
the partial densities at that point. Since the temperature and pressure are con-
stant, the molar density N 1s constant and the mass density p can be ex-
pressed as

!
p = moN = - 11 C + 1
2

This can be expressed with the definition

as

o = moN(BC + 1) (4)
Introducing the dimensionless quantities

Dig

T = =% =X T = -2

D1y ro U1 o
2

— u —

Z:i F: 1’,0 v o= v
) Toa 41,0

- To'1,0P1 H

p= Rep o = ———io 8e1,0 = 55—
Hq ’ 1.0 ? P1,0"11



and substituting these and equation (4) into equations (1) to (3) result in the
following dimensionless equations:

Continuity:
2 [Ftee + 1)) + % [Fa(ee + 1)) =0 (5)
Momentum:
;%J’E%:Reio €c++11’;—§?<ﬁ'§%>+ﬂ_sgc—+Ty (8)
Diffusion:
v % P —:%' ) Rel,(;LSCl,O BC; - 55; (BT%T %9 o

The stream function V¥ is defined by the following relations:

NI (pe o+ 1)

o (8)
M- L (gc+1)

S3r ru

This satisfies the dimensionless continuity equation.

The dimensionless transport properties D and i are evaluated from the
ratio of the values of the pure components and also in the case of viscosity from
an elementary mixing equation. The mixing equation used for viscosity 1is

o= =
CHI:L . (l - C)m2
H1,0 2,0

(ref. 6), which upon substitution of the dimensionless groups, reduces to

- c + 1
o= b 1 - C (9)
(B +1)C +
Hz,0
11,0



The dimensionless diffusivity is calculated from the Gilliland equation in

the following manner:
1/3
.z Y ERY
Dyq Vl/S + Vé/S 2 \my  my

1

Introducing Vz = VZ/Vl results in

(10)

The dimensionless diffusivity can alsoc be derived in a somewhat different but
equivalent form from a Lennard-Jones potential argument. This method was not
used, but it is presented in appendix B by way of illustration. The more rigor-
ous Lennard-Jones potential argument provides an alternate constant value for D.

The momentum diffusion and energy equations are now transformed to the

z - ¥ plane in the following manner. Originally, ¥, C, and u are functions of
the spatial coordinates as follows:

Vo= y(r,z)
¢ = C(r,z)
u = u(r,z)

and after the transformation functional relations of C, u, and the spatial coor-
dinate r in terms of ¥ and the spatial coordinate =z are obtained:

r= —l:(ﬂf,;)
C = c(v,z)
E = E(W)E)

The relations for the transformations are

) _(2) () (@
SE'r oz ¥ o7 » oy "
O sy fe

or zZ or, zZ ov Z

Transforming the momentum and diffusion equations (eqs. () and (7)) with equa-
tion (10) produces the following:

I

(11)

I



Momentum:

Diffusion:

(e + 1) (D ac> (12)

g T
az ~ Rey oSC:L o oV v

Because of the cylindrical geometry the r does not_drop out of the equations as
in the work of Pai, and a relation between ¥ and r must be carried along with
the transformed equations set. Since o¥/dz is zero at z = O and very small
elsewhere, it is neglected here; from equations (8) the following is obtained:

¥ ro_ -
f ay* = f u(pc + 1)r* ar* (14a)
0 0

where * denotes the dumy variable. This relation will be used for the initial
conditions since they are expressed as functions of r. During the integration
where r 1is a dependent variable, the following is used:
r ¥
T* ar¥ = — qy* (14b)
o u(pC + 1)

The numerical integration is made with equations (12) to (14) and is described in
appendix A.

As an aid in presenting the results, two terms are defined. The first term,
the average axial velocity of inner-stream component at some axial station, is

defined as
[0.0)
“//' uCr dr
- 0

uav,l - ©
f oF ar
8]

The second term, the inner-fluild average density, 1s defined from continuity of
the inner fluid. It represents the amount of inner fluid present in a cylindri-
cal section of radius T and length L divided by the amount of inner-stream
fluid that would have been present in the section had both streams been initially

moving with the same velocity. The radius rp., 1s chosen large enough so that




there 1s no flow of inner-stream component out the sides of the cylinder. Since
the pressure and temperature are constant, an aversge density at any axlal sta-
tion is simply

Pay =

Ill__1

=

av

end the inner-fluid average density is defined as

L—
5 _ 1 dz
av,IL T I, T
0 av

RESULTS AND DISCUSSION

The results obtalned by this analysis are digcussed in this section in terms
of the potential core of the inner fluld. This term is used to mean the undis-
turbed flow inside the mixing region between the two coaxial streams. Neither
nature nor the equations, however, allow for undisturbed flow in contact with
disturbed flow. As soon as the outer fibers of the inner stream experience ac~-
celeration, all the inner fibers also accelerate (some only to an infinitesimal
extent). It is necessary, for this reason, to legislate a potential core. This
is done by considering all the inner fluid that has a velocity less than 1.05
times the initial inner-fluid velocity to lie in the potential core (see fig. 1).

The accuracy of the results of this analysis 1s tied in large part to the
assumption that

du du
5 3z

a¢ o¢
3 77 3z

This assumption is especially in doubt in the region close to the entrance. All
the results presented here, however, are for this region between the entrance and
the end of the potential core. To 1llustrate that the results are not obviously
invalid, these derivatives are calculated for the case of largest density and
velocity gradients along the z-direction at a radius of approximately 1 (fig. 2).
This region along the boundary of the Jets exhibits the largest values of the
partial derivatives in both directions. It 1s seen from the curves that, while
aC/0z
C/or
at z = 2. The ratio of S%ég% is seen to remain at a very low value for the

the value of the ratio starts at about 0.5, it drops to a value below 0.1
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whole reglon of interest. Since the calculations are made with this assumption
included, this proof of validity is not conclusive but is inferred from the small
values of the ratios.
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Figure 2. - Evaluation of validity of boundary-layer assumptions. Reynolds number, 1000; Schmidt
number, 1; molecular volume ratlo, 0.2; viscosity ratio, 0.2; velocity ratio of outer to inner
streams, 100; density ratio of inner to outer streams, 100; Froude number, o.

It can be seen from the differential equations describing the flow phenom-
ena that, when body forces are neglected, the Reynolds number of the inner stream
at the initial conditions appears only as a constant factor in both equations
(12) and (13) and does not appear at all in equations (14a) and (14b). The equa-
tlons could have been solved in terms of E/Rel,o; then the Reynolds number would
not have appeared at all in the equations. Hence, the Reynolds number has no ef-
fect on the velocity and concentration profiles or on the mixing in the absence
of body forces as long as the flow is laminar. Changing the Reynclds number will
only affect the axial location at which a profile exists and not the shape it
takes. The data that appear here can be made to apply for any Reynolds number by
manipulation of the Z-coordinate. The real effect of the Reynolds number is on
the stability of the flow system with which this report is not concerned. For
these reasons all the data that are presented here are for Rel)o = 1000.
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The main body of results presented here is for flat initial velocity and
concentration profiles. Flat profiles were chosen for simplicity in calculation
despite the fact that a singularity exists where the profiles meet. This flow
would be more stable than flow with a velocity profile that was not monotonically
inecreasing with radius, such as two parabolic profiles both reaching zeroc at
T = 1.
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(a) Velocity profiles.
(v} Concentration profiles.

Figure 3. - Velcoeclity and concentration profiles wlth flat initial
profiles. Reynolds number, 1000; Schmidt number, 1; molecular
volume ratid, 0.2; viscos!ty ratlo, 0.2; velocity ratic of
cuter to inner streams, 10; density ratlc of inner to outer
streams, 10; Froude number, w=.

Figure 3 shows typical veloclty and concentration profiles that have flat
initial profiles. The case illustrated has a velocity ratio of outer to inner
streams of 10 and a density ratio of 1nner to outer streams of 10, both inter-
mediate values in the range of values considered. The axial position of the pro-
files is at Z = 48.4, which as the profiles show 1s near the end of the poten-
tial core, since the center streamline has accelerated to a value of about S per-
cent above the initial value. The velocity profile is a smooth curve, monotoni-
cally increasing in the increasing r-direction. There 1s an inflectlon point in
the curve that represents a potentially unstable flow condition. The concentra-
tion profile in figure 3(b) is a smooth monotonically decreasing curve and also
exhibits an inflection point. It also should be noted that a comparison of fig-
ures 3(a) and (b) shows the momentum mixing region is larger than the concentra-
tion mixing regicn.
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The end of the potential core 1s considered as that point at which the cen-
terline velocity reaches 1.05 times the initial centerline velocity. The length
of the potential core is a functlon of both the mass density function and the
initial velocity ratio as shown in figure 4. It 1s seen that the potential core
length increases with increasing B and decreasing ﬁé values. It is interest-
ing to note that even for p = O, which corresponds to fluids of the same density
or the same fluid in each stream, and ﬁé = 100, the potential core extends for
approximately 6 radii downstream. For B = o0 and u, = 5, the potential core
extends for approximately 76 radii downstream. The end of the potential core
corresponds to the point at which succeeding velocity profiles become similar and
similarity solutions become valid, and therefore is an important result of this
analysis.

Velocity ratio of
outer to inner_X2D
streams, e
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20 — 1T I

Potentlal core length, rad
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0 20 40 60 80 100
Density ratio of inner to outer
streams, B

Figure 4. - Length of potential core
as a function of density and
initial veloclty ratios. Reynolds
number, 1000; Schmidt number, 1;
molecular volume ratio, 0.2; vis-
cosity ratio, 0.2; Froude number,
o3,

The axial velocity of the inner-stream fluid, averaged in the radial direc-
tion, at the end of the potentlal core is the subject of figure 5. The curves
show that 1., 1 1ncreases as U, increases and B decreases; however, the

2

effect of B variation becomes very small at values of § greater than 20. The
values for ﬁév 1 at the end of the potential core, ranging from about 2 to 5
M
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for the range of variables considered, indicates the acceleration of the inner
fluld that takes place before a simllarity solutlon becomes wvalid.
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Figure 5. - Average axial velocity at end of potential core
as & function of density ratio. Reynolds number, 1000;
Schmidt number, 1; molecular volume ratlo, 0.2; viscosity
raetio, 0.2; Froude number, w«.

Figure 6 shows the average density of inner-fluid component for the region
between 72 =0 and Z =15 as a function of the initial density. The sengi-
tivity of inner-stream average density to changing p increases markedly for in-
creasing values of ﬁé. At a value of Eé = 100, the average dengity increases
from about 0.15 to 0.40 as B varies from O to 100. This result has an inter-
esting application to the gaseous, coaxial-flow, nuclear-reactor concept of ref-
erence 3. Values of U, = 100, B = 100, and a final 7 = 15 comply with one of

the cases of reference 3, and the resultant value of the average density of 0.40
is very encouraging for this concept.

The effect of a body force acting along the flow axis in the same direction
as the flow is shown in figure 7. The Froude number contains the acceleration
term due to the body force in the denominator; hence, as the Froude number ap-
proaches infinity, the body force approaches zero. Here, again, the potential
core i1s made up of fluid moving at or near the initial inner-stream velocity so
that the potential core length approaches zero as the Froude number beccmes
emall. This plot of potential core length as a function of Froude number for a
glven set of parameters illustrates that, for Froude numbers of the order of 102
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or less, the mass and momentum transfer become second-order effects compared to
the acceleration caused by the force field. The case shown 1s for B = 10, which
is representative of cases with high £. This is so because the body force term
is of the form pC/[F(BC + 1)] or, on rearranging, 1//[F(1 + é%)]. As B be-
comes very large, this term can be approximated as l/F inside the potential
core. When B 1s small, the effect 1s small; and at B = 0 the body forces
have no effect.

Figure 8 illustrates the effect of physical property variation. The effect
of Schmidt number variation is shown in figure 8(a). For a change in Schmidt
number by a factor of 10, the length of the potential core and the ﬁév 1 8t the

2

end of the potentiagl core only change by approximately a factor of 2, Fig-
ure 8(b) shows the effect of changing the viscosity ratio. Hence, for a tenfold
change in Eé the potential core length changes by approximately a factor of 3,

but the _év 1 changes only by about 1.2. Finally, the effect of changing the
) —

moleculer volume ratio V, of the two components is shown in figure 8(c). Once
again, for a tenfold change in Vé the potential core length changes by only a
factor of somewhat less than 2, and the Eév at the end of the potential core
changes by only 10 percent or so.
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These last curves show that the choice of dimensionless groups made in this
spproach was quite fortunate and that results obtained from it should be valuable
even though the physical properties used in the calculation were only approximate
values.

Figure 9 shows the velocity and concentration profiles for a case with para-
bolic inlet velocity profiles, which are plotted with the same values of 1nput
parameters. The very slow-moving region at T =1 slows down the flow around it
and prevents early acceleration of the inner stream, which would provide for much
longer potential core lengths than were found for the slug-flow cases. This type
of nommonotonic velocity profile, however, is extremely unstable hydrodynasmically
and is included here only as a point of interest.
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Figure 9. - Veloclty and concentratlon proflles wilth paraboelic
inlet veloeclty profiles. Reynolds number, 1000; Schmldt
number, 1; viscosity ratio, ©.2; veloclty ratio of outer to
inner streams, 10; density ratioc of inner to cuter streams, 10j
Froude number, .

SUMMARY CF RESULTS

In this research study, an analysis for the isothermal, laminar coaxial flow
of two fluids is presented. The analysis is based on certain assumptions,
mainly, the boundary-layer simplifications and constant pressure in the flow
field. The analysis resulted in an equation set, which was solved numerically.
Typical results yielded by this analysis are summarized under the two categories
of general and specific results. The general results are as follows:

1. The velocity and concentration profiles are smooth curves, and both con-
tain inflection points. Velocity increases monotonically and concentration of
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inner-gtream component decreases monotonically out from a radius or stream func~
tion value of zero.

2. The potential core length increases with increasing density ratio of
inner- to outer-stream components; it decreases with increasing velocity ratio of

outer to inner streams.

3. Increasing axial acceleration forces in the direction of flow, as meas-
ured by the Froude number, shortens the length of the potential core.

4. Changing the initial velocity profile from a flat to a parabolic form in-
creases the potential core length markedly for this analysis.

For the following parametric values: Reynolds number, 1000; Schmidt number,
1; molecular volume ratlo, 0.2; viscosity ratio, 0.2; the following specific re-
sults were found:

1. For fluids of the same density and a velocity ratio of outer to inner
streams of 100, the potential core length remains approximstely 6 radii.

2. The average velocity of the Inner-stream component at the end of the po-
tential core increases as the veloclty ratio of ocuter to inner streams increases
and the density ratioc of inner to outer streams decreases. For values of density
ratio of lmner to outer streams greater than 20, the effect of varying the den-~
slty ratio is small.

3. For a velocity ratio of outer to inner streams of 100, the average inner-
stream density for the region 15 radii long starting at the initial face in-
creases approximately threefold as the density ratio of inner to outer streams
varles from O to 100. )

4. For a velocity ratio of ocuter to inner streams of 10, a density ratio of
inner to outer streams of 10, and Froude numbers of 102 or less, the mass and
momentum transfer become second-order effects compared to the acceleration caused
by the force fleld.

5. For s velocity ratio of outer to inner streams of 10 and a density ratio
of Inner to outer streams of 10, changing the Schmidt number from a value of 2 to
8 value of 0.2 Increases the potential core length by a factor of 2; changing the
viscosity ratic from 0.2 to 2 decreases the potential core length by a factor
of 3; and changing the molecular volume ratio from C.2 to 1 decreases the poten-
tial core length by a factor of approximately 2.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, October 1, 1962
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APPENDIX A

NUMERICAL INTEGRATION

The differential equations, which define the physical system, are:

du B+l D du c

u_prl2 [przum + 1) aﬂ + STy (A1)

~ 2 ~
L [pCr 1) 5 (Drzu %3) (82)

v
*
oz | ey (83)
0

= BC + 1 (A4)

(g + 1) + 1-C

These equations are integrated numerically to obtain the solution of each func-
tion (u = u(y,z), C = C(¥,z), r = r(¥,z), and p = p(¥,z)) in the semi-infinite
strip R:(0 <V <V .., z > OJ.

il

The description of the system at z = 0 1is given by the following rela-

tions:
u(¥,0) = u(r) (A5)
c(vy,0) = c(r) (a8)
v(r) = u{T u(r*) pe(r*) + 1 r¥ dr* (A7)
Also, at z = 0,

g_“zt -0 (48)

Now if the flat initial profiles, u(r) and C(r), are defined as functions of the
radius by:

u(r) =1, ¢(r) =1 (0<r<1) (a9)

u(r) = u,, C(r) =0 (L<r<r. ) (A10)

4 — max
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then substituting the values of u(r) and C(r) given in equations (A9) and (AlO)
into equation (A7) produces the relations:

u(¥,0) = 1, C(¥,0) = 1 (o <v< %l) (a11)
a(h,0) = 1wy, c(v,0) =0 (EEE <y <up,) (12)

A substitution of the relations derived in equations (All) and (Al2) into equa-
tion (A7) yields at z =0

2(y) =gy (0<r<1) (413)
and
c2(y) = [( - P__‘z*i) ‘12_2] +1 (1 <r <rpay) (Ar4)

The solution of the glven system 1s obtained by using finite difference
methods. By dilviding the semi-infinite strip R:{0 < ¥ < V¥ .., z > O] into a
number of rectangles, a grid or mesh is constructed of dimension mxn. Hence the
notation, R; 35 would denote the ith 3th point on the mesh. If u(wi,zj) is

2
defined as the functional value of u(V,z) associated with the mesh point Ry 3
2
the formal derivative approximations may be described as

UW(Wi;Zj + 6 AZ) ~ Z_IA\U' [u(w1+l’zj+9) - u(wi—l’zjﬂ%)] (AlS)

1
uww(wi;zj + 6 Az) *'ZZJ;g [u(wi+1,zj+9) - 2U(W1:Zj+9) + U(Wi_l;zj+@)]
(a16)
uz(wi,zj + 6 Az) Q’ﬁz‘[u(wi;zj+l) - U(Wi;zj)] (AL7)

where 0 £ 60 £ 1.

Applying approximations (Al5) to (Al7) to equations (Al) to (A4) (with
6 = 0) results in:

BC(Wi;Zj)
Flpc(¥;,z5) + 1]

Az + 1
w(Vi,250) = 347 B [o0vian2y) - 6lvig,zp)] + ulvg,zy)

(a18)

20



where

- 2
60,2, = ulry,m e 0 , Juty, o)) [so(y ) + 1] )
1
x g [alvpazy) - ulvg,z)] s (a29)
2
Az [BC(wi,zj) + 1]
C(Wl)ZJ.E]_) = 2 Aw Re Sc [H(Wi_*_l)z‘]) - H(qfi-l’zl)] y
where
2 1
H(Wi;zj) = Dr (wi,zj)u(wi,zj) TAY [C(Wi+l:zj) - C(Wi_l,zj)]
Vmax > (a20)
24y ,2441) = o
A u(W:Zj+1)[ﬁC(¢i)Zj+l) + 1]
0]
-/
and
BC(Wi:Zj+1) + 1
H(Wi)zj"‘l) = 1 - C(wlizj+l) (Azl)

(B + l)C(Wi;Zj+l) + m

If equations (All) to (Al4) are used, the description of the system at z =0
becomes

U-(Wi;o) =1, C(WiJO) =1 (O < 1I”]_ S.E'—;_];)
v (A22)
u(¥;,0) = ug, c(y4,0) =0 (E—%"L <Vy; £ Wmax)
2y,
rz(ﬂfi;o) =TT T [0 <rlyy) < l]
(A23)

( B + 1)2
2 Vi - T3

Hence, given values of B, Re, Sc, F, Vo, ug, and  VYpoavs numerical solutions for
u(wi,zj), C(Wi,zj), r(wi,zj), and H(Wi;zj) can be obtained for any point Ry 4
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on the strip R, starting at 2z = 0. The stability of the solution is a function
of the mesh ratio A = Az/(AW)Z. The following method for obtaining a stable
solution is obtalned from reference 6:

Let Odu/oz = @(W,z,u,uw,uww) and define parameters a and b such that

%ﬁ >a>0 (A24)
Sy
and
l%* g’% * %Sb (425)
Now if A} is chosen such that
< 22 (a26)

(A27)

If a AV 1is chosen such that relation (A26) is satisfied, then Az can be com-
puted from:

Az,
A =
(Ay)?
and
1-b Az
AT
oxr
2
A < — {80 (A28)

T ofz + (an?]

Application of the aforementioned theorem to equation (Al) with the assumption
that C, p, and r are known functions of ¥ and =z results in

Bobrig [*”2“(5" + 1) -Sﬂ = 010V, 2,00y, uyy)

2z



Hence,
o
5ﬁl = §§§¥l {%Z(Bc + 1) g% g% + 2ru(pC + 1) g% %%

2, 3CJu o dFy
+prﬂaf-g‘l}-+ur (BC-&-l) aq,E

P
53§-= Eﬁg—l-[rzu(ﬁc + 1) %% + 2ruu(pc + 1) g% + 2ur(pC + 1) g%-+ nr2up g%}

o
1 = B+ 1 urzu(BC +1)

aU.‘an Re

al—m
S -

[zl - o
Suyl  1ouyy

and thus, in order to obtaln a stable soclution,

Ju

bl =

(ap)?
Az. = (A29)
b [z + (a0)Z]

It was found that the value of A} that would satisfy inequality (A26) could be
establighed from initial conditions; hence it was necessary to compute only
values of Az that varied directly with z.

Large values of u, and B seriously limited the accuracy of the solution

because of truncation errors; hence the following less sophisticated method was
employed for these extreme cases. To avoid these errors, i1t is required that the
functional value of C(Wi,zj+l) vary less than some fixed percentage of

C(Wi,zj . Let K be a number such that O < [K| < 1; the change of C(Wi,zj+l)
could be described as

C(Wi,zj+l) = C(Wi,zj)(l + K) (A30)
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From the finite difference approximation, equation (A30) becomes

ac(wi,zj) ~ C(Wiyzj+l) - C(Wi,zj)

P ~ (A31)
Substitution of equation (A29) into (A30) yields
oC(¥y,25) _ KC(¥y ,2; (1432)
9z Az
or, in terms of Az, relation (A32) can be written:
KC(v,,z,)
(Az)i = BC Wi)z'
SZ
Hence, the Az to be used at each jth interval is
Az = min[(Az), | (433)

The Az computed in this manner 1s approximately one order of msgnitude less
than the Az calculated by equation (A29). Thus, if a A} 1is chosen that sat-
isfies relation (A26), stability is assured.
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APPENDIX B

LENNARD-JONES POTENTIAL DIFFUSIVITY

The value of 5} the dimensionless diffusivity equal to DlZ/Dll’ can also
be derived from the Lennard-Jones potential argument. The method is as follows

(ref. 7) or

Then the term

1
E

2

from the Gilliland equation corresponds to

oDy
€z g
2

€
1 o]
(l + _§>
o1

from the Lennard-Jones potential argument. The value of D then is constant
when evaluated by either method.
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